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Abstract— The bulk of social network applications for smart-
phones (e.g., Twitter, Facebook, Foursquare, etc.) currently rely
on centralized or cloud-like architectures in order to carry out
their data sharing and searching tasks. Unfortunately, the given
model introduces both data-disclosure concerns (e.g., disclosing
all captured media to a central entity) and performance concerns
(e.g., consuming precious smartphone battery and bandwidth
during content uploads). In this paper, we present a novel
framework, coined SmartOpt, for searching objects (e.g., images,
videos, etc.) captured by the users in a mobile social commu-
nity. Our framework, is founded on an in-situ data storage
model, where captured objects remain local on their owner’s
smartphones and searches then take place over a novel lookup
structure we compute dynamically, coined the Multi-Objective
Query Routing Tree (MO-QRT). Our structure concurrently
optimizes several conflicting objectives (i.e., it minimizes energy
consumption, minimizes search delay and maximizes query
recall), using a Multi-objective Evolutionary Algorithm based
on Decomposition (MOEA/D) that calculates a diverse set of
high quality non-dominated solutions in a single run. We assess
our ideas with mobility patterns derived by Microsoft’s Geolife
project and social patterns derived by DBLP. Our study reveals
that SmartOpt can yield query recall rates of 95%, with one
order of magnitude less time and two orders of magnitude less
energy than its competitors.

I. INTRODUCTION

The widespread deployment of smartphone devices and the

advent of social networks have brought a revolution in social-

oriented applications and services for mobile phones. There

is already a proliferation of innovative applications founded

on the concept of a smartphone network1. One example is

opportunistic and participatory sensing [4], [2], [3], where

applications can task mobile nodes in a given region to provide

information about their vicinity using their sensing capabil-

ities. Another example is road traffic delay estimation [11]

using WiFi beams collected by smartphone devices rather than

invoking expensive GPS acquisition. On the social site, Google

Latitude [8] enables users to track the places they and their

social network have visited. The given service already reports

over 3M enrolled users and over 1M active users, despite

the controversial privacy concerns. Similarly, mobile social

1We define a Smartphone Network as “a set of smartphone devices that

communicate in an unobtrusive manner, without explicit user interactions, in

order to realize a collaborative or social task.”

Fig. 1. A visual illustration of the Multi-Objective Query Routing Tree (MO-

QRT) structure proposed in this work. Our SmartOpt Framework constructs
MO-QRT structures optimized on several conflicting objectives (i.e., energy,
time and recall). Our structure can be utilized for finding objects (e.g., images,
videos, etc.) in a social neighborhood, without the necessity of having the
objects disclosed to the social network provider.

networking applications like Foursquare, Gowalla and Loopt

enjoy enormous success in the Smartphone community.

Currently, the bulk of social networking services, designed

for smartphone communities, rely on centralized or cloud-like

architectures. In particular, in order to enable content sharing

and community search, the smartphone clients upload their

captured objects (e.g., images uploaded to Twitter, video traces

uploaded to Youtube, etc.) to a central entity that subsequently

takes care of the content organization and dissemination tasks.

Although certain types of objects, such as text-based micro-

blogs, will behave reasonably well under this model, signifi-

cant challenges arise for captured multimedia and sensor data

(e.g., data captured by the camera, microphone, accelerometer,

etc.) We claim that the centralization of these object types

will be severely hampered in the future due to the following

constraints:

i. Data-Disclosure Constraints: Continuously disclosing

user-captured objects to a central entity might compro-

mise user privacy in very serious ways2.

ii. Energy Constraints: Smartphones have expensive com-

munication mediums, thus by continuously transferring

2“Google Apologizes for Buzz Privacy”, David Coursey, PC World Busi-
ness Center (online), Feb. 15th, 2010.



massive amounts of data to a query processor, through

WiFi/3G/4G connections, can both deplete the precious

smartphone battery faster, increase query response times,

but can also quickly degrade the network health3.

In this paper, we present techniques to enable smartphone

users keep their data in-situ, for data-disclosure and perfor-

mance reasons, offering at the same time high performance

search capabilities over other user’s data in the social com-

munity. When a user invokes a search to find an object

of interest, e.g., “Pictures of street artists performing in

Manhattan” (see Figure 1), the user first downloads a Query

Routing Tree (QRT) X from a SmartOpt server. The X
structure resembles spanning tree structures constructed during

searches in unstructured Peer-to-Peer (P2P) systems [13], [12]

or aggregation trees used in sensor networks [1], but X is tuned

to optimize several objectives concurrently during searches in

a smartphone network.

In particular, the QRTs proposed in this work are optimized

to (i) minimize energy consumption during search; (ii) min-

imize the query response time in conducting the search; and

(iii) maximize the recall rate of the user query. Most existing

works optimize the objectives (i-iii) individually, or optimize

one and constrain the complementation. This often results in

sub-optimal solutions since the objectives are conflicting and

a decision maker needs an optimal trade-off [6]. To the best of

our knowledge, no research study has ever dealt with the QRT

problem as a Multi-objective Optimization Problem (MOP).

The particular issue is that there is no single solution that can

optimize all objectives in a MOP, but a set of non-dominated

solutions, commonly known as the Pareto Front (PF).

Our main contributions are summarized as follows:

• We propose the Multi-Objective Query Routing Tree

(MO-QRT) problem for Smartphone Networks and for-

mulate it as a MOP that minimizes the energy con-

sumption and time overhead during searches but also

maximizes the recall rate of answers.

• We present SmartOpt, which is an efficient algorithm for

the MO-QRT problem using a Multi-Objective Evolution-

ary Algorithm based on Decomposition (MOEA/D).

• We evaluate our SmartOpt Framework using mobility

patterns derived from GeoLife [15] and social behavior

patterns derived from DBLP [5].

The remainder of the paper is organized as follows: Sec-

tion II, provides our system model and defines the problem,

while Section III, introduces the SmartOpt framework. Our

experimental methodology and results are presented in Sec-

tion IV, while Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we outline our system model and formulate

the problem SmartOpt aims to solve. A table of respective

symbols is summarized in Table I.

3“Customers Angered as iPhones Overload AT&T”, Jenna Wortham, The
New York Times (online), Sept. 2nd, 2009.

A. System Model

Overview: Let C, denote a social networking service that

maintains centrally the profiles P = {p1, p2, ..., pM}, for each

of its M subscribed users (i.e., U = {u1, u2, ..., uM}). The

profiles record basic user details, authentication credentials,

the user interests (e.g., traveling, sports, music, etc.) and

friendship relations that define the conceptual social network

graph G among the M users. In our setting, a user ui (i ≤ M )

uses a smartphone (or tablet) device to both perform its

day-to-day activities but also to capture objects of interest

at arbitrary moments (e.g., “take a picture of the Liberty

Statue”.) Each object oik might be tentatively “tagged” with

GPS information and other user tags (e.g., “lat: 40.689201355,

long: -74.0447998047, tags: “Statue Liberty Ellis Island”).

Connection Modalities: Each ui features different Internet

connection modalities that provide intermittent connectivity to

C (e.g., WiFi, 2G/3G/4G). Each ui also features peer-to-peer

connection modalities that provide connectivity to nodes in

spatial proximity (e.g., Bluetooth or Portable WiFi available

in Android). We assume that when ui is connected to C,

then C is aware of ui’s absolute location (e.g., GPS) or ui’s

relative location (e.g., the cell-ids within ui’s range, WiFi RSS

indicators within ui’s range or other means utilized for geo-

location). Notice that each of the connection modalities comes

at different energy and data transfer rate characteristics. For ex-

ample, we’ve profiled an Android-based HTC Hero and found

that WiFi consumes 39mW/byte, 3G consumes 24mW/byte

and Bluetooth consumes 14mW/byte. Additionally, Bluetooth

had a symmetric data rate of 864kbps, WiFi an asymmetric

data rate of 123Kbps (up) and 2Mbps (down) and 3G an

asymmetric data rate of 2.7Mbps (up) and 7.2Mbps (down).

The nominal data rates for the aforementioned modalities

might differ significantly, as this is also validated in [?],

mainly due to the deployment environment. Moreover, while

the power consumption on the different kinds of radios can be

comparable, the energy usage for transmitting a fixed amount

of data can differ an order of magnitude because the achievable

data rates on these interfaces differ significantly [10]. Finally,

the availability characteristics of these kinds of modalities can

vary significantly. The penetration of some form of cellular

availability (e.g., WiFi or 3G) is significantly higher than

Bluetooth, on average. Thus, uploading or downloading large

data items using Bluetooth can be more energy-efficient than

using a radio network, but Bluetooth may not always be

available and it is often slower.

Search Techniques: Now let an arbitrary user uj (j ≤
M ), be interested in answering a query4 Q over its social

neighborhood G′ (G′ ⊆ G). For instance, let Q be a depth-

bounded breadth first search query over uj’s neighbors in the

G graph (i.e., in G′). This kind of conceptual query can be

realized in the following manners:

1) Centralized Search (CS): This algorithm assumes that

the multimedia objects and tags are all uploaded to

4Without loss of generality we assume simple keyword queries over tags



TABLE I

TABLE OF SYMBOLS

Symbol Description

C (Centralized) Social Networking Service

U Users of the Social Network (i.e., {u1, u2, ..., uM})

P User Profiles stored by C for Us (i.e., {p1, p2, ..., pM})

oik Object k (images, videos, etc.) recorded by user i.

G Conceptual Graph connecting the users in U .

G′ Social Neighborhood of some arbitrary user.

Q Query conducted in social neighborhood G′ (G′ ⊆ G).

X Query Routing Tree constructed to answer Q.

U ′ Users that are connected to C during the execution of Q.

C prior query execution. Once Q is posted, C can

locally derive the answers (using its local tag database)

and return the answers to uj . This model, which is

currently utilized by all social networking sites (such as

Twitter, Youtube, Loopt, etc.), performs well in terms

of query response time but performs poor both in terms

of data disclosure (i.e., oik objects and tags need to be

continuously disclosed to C) and performance (i.e., data

transmission of large objects over radio links is energy

demanding).

2) Distributed Random Search (DRS): This algorithm as-

sumes that the objects and tags are all stored in-situ

(on their owner’s smartphones). In order to realize the

search task, a querying node uj downloads from C the

addresses (e.g., IP) of its first line neighboring nodes

(i.e., G′′ ⊆ G′). uj then contacts the nodes in G′′ in

order to conduct a depth-bounded breadth first-search in

a P2P fashion (i.e., using a pre-specified QTTL > 0).

Once some arbitrary node ux ∈ G′ receives Q, it looks

both at its local tags, in order to identify an answer, and

also forwards the request further until QTTL becomes

zero.

Although the DRS approach improves the data-disclosure

drawback of the CS algorithm, it is quite inefficient during

search and also is inefficient in respect to energy consumption.

In particular, Q has to go over a random neighborhood rather

than a neighborhood that is contextually related to the query.

For instance, in our Liberty Statue query example, we would

have preferred querying a friend living in lower Manhattan

rather than a person living in California (as the former would

have a higher probability of capturing the statue). Also, if uj

had two friends, ux and uy, both living in lower Manhattan,

with ux being in spatial proximity to uj during the query (i.e.,

within a few meters), while uy being far away, would have

made ux a better choice for posting the query (as ux could

have been queried through a local link such as Bluetooth).

B. Problem Formulation

The Multi-Objective Query Routing Tree (MO-QRT) struc-

ture, proposed in this paper, improves the search operation

of the DRS algorithm by optimizing the neighbor selection

process. In particular, a node downloads from C a QRT X that

is optimized according to the following formulation: Given

a social network of users U , a list of active users U ′ and

their coordinates, the profiles P of these users and a query

Q, posted by an arbitrary user uj , C aims to optimize an X
structure using the following objectives:

Objective 1: Minimize the total Energy consumption of X

Energy(X ) = min
∑

∀(ua,ub)∈X (X⊆U ′)

e(ua, ub) (1)

where, e(ua, ub) denotes the energy consumption for transmit-

ting one bit of data over the respective edge (WiFi, Bluetooth

and 3G).

Objective 2: Minimize the Time overhead of X

T ime(X ) = min(max(ua,ub)∈X t(ua, ub)) (2)

where, t(ua, ub) denotes the delay in transmitting one bit of

data over the respective edge.

Objective 3: Maximize the Recall rate of X

Recall(X ,Q) = max(
Relevant(Q) ∩Retrieved(X ,Q)

Relevant(Q)
)

(3)

where Relevant(Q) denotes the set of all

objects in U ′ that are relevant to Q, formally as:

Relevant(Q) =
⋃

∀ua∀k(ua∈U ′)(oak)), given that ua’s profile

(denoted as pa) contains terms found in Q. On the other

hand, Retrieved(X ,Q) denotes the set of objects that have

been retrieved in response to Q over structure X , formally as

Retrieved(X ,Q) =
⋃

∀ua∀k(ua∈X )(oak)), again given that pa
contains terms found in Q.

In a MOP, there is no single solution X that optimizes all

objectives simultaneously, but a set of trade-off candidates.

The set of trade-off solutions, commonly known as the Pareto

Front (PF), is often defined in terms of Pareto Optimality [7].

That is, considering a maximization MOP with n objectives:

a solution X ∗ is considered non-dominated or Pareto optimal

with respect to another solution Y , iff ∀i ∈ {1, ..., n},Xi ≥
Yi ∧ ∃i ∈ {1, ..., n} : Xi > Yi, this is denoted as X ≻ Y .

III. THE SMARTOPT OPTIMIZER

In this section, we present the SmartOpt Query Optimizer

(referred to SmartOpt hereafter), which solves the MO-QRT

problem in an online manner. We assume that some arbitrary

user uj generates a query Q and forwards it to the C.

C’s optimizer is then employed for finding a diverse and

high-quality set of non-dominated smartphone QRTs that can

facilitate the resolution of Q. Our framework proceeds in three

phases: a) the Pre-Processing phase, during which the problem

is decomposed into a set of sub-problems; b) the Optimization

Phase, during which a set of Pareto-optimal QRTs is identified;

and c) the Dissemination Phase, during which the solution

QRT is propagated to uj and the search process is initiated.

A. Pre-Processing Phase

The pre-processing phase consists of representing a QRT

and decomposing the problem into a set of scalar sub-

problems.



1) Representation: In our approach, a solution5 X is a

query routing tree with |G′| active smartphone users that can

participate in the resolution of Q. Without loss of generality,

let X be represented as a vector in which each index i

corresponds to a user ui and the value of that position

corresponds to ui’s parent. The root of the tree is the query

user (for simplicity noted as u1). A negative value −1 in any

position indicates that the given users is not currently selected

in the query routing tree X .

2) Decomposition: Initially, the MOP should be decom-

posed into m sub-problems by adopting any technique for

aggregating functions [14], e.g., the Chebyshev approach used

here. In this paper, the ith sub-problem is in the form

maximize gi(X|wi
j , z

∗) = max{wi
j |fj(X )− z∗j |} (4)

where fj , j = 1, 2, 3, are the objectives of our MOP

formulated earlier in Subsection II-B, z∗ = (z∗1 , z
∗
2 , z

∗
3) is

the reference point, i.e. the maximum objective value z∗j =
max{fj(X ) ∈ Ω} of each objective fj , j = 1, 2, 3 and Ω is

the decision space.

B. Optimization Phase

In this phase, SmartOpt optimizes in an online manner the

solution space using a set of genetic operators.
1) Initialization Step: In Step 1 of our algorithm, we adopt

a random method to generate m QRT solutions for the initial

internal population (i.e., IP0). Namely, a QRT solution X is

initiated by setting each smartphone user ui, i = 1 . . .M as

a parent. Then, mobile users uj , j = 1 . . .M are uniformly

randomly selected, and ui is set as uj’s parent iff i 6= j

and ui is either the root or has already a parent. If uj has

already a parent then we stop and we set as parent the user

ui+1. This continues until all users ui are set as parents once.

Thereinafter, the Internal Population IPgen is used to store the

best QRT solution X i found for each sub-problem gi during

the search, i.e. in each generation gen.
2) Genetic Operator Step: The genetic operators (i.e.

selection, crossover and mutation) are then invoked on IP for

offspring reproduction, i.e. generate a new QRT solution Yi for

each sub-problem gi, i = 1 . . .m. A M -tournament selection

operator [9], a two-point (2x) crossover and a swap mutation

operator [14] are utilized in our approach. The selection

operator is responsible to greedily select two parent solutions

for mating and forward them to the crossover operator. The 2x-

point crossover exchanges information from two parent QRT

solutions (Pr1, P r2) and generates two new QRTs O1, O2 -

the offspring, as follows:

• Two crossover points x1 and x2 are uniformly randomly

selected from numbers 1 to M-1, where x1 < x2.

• The pieces of the parents Pr1 and Pr2 falling within

x1 and x2 are exchanged to produce two offspring, e.g.,

O1, O2.

• The best offspring O is then forwarded to the mutation

operator, where O = O1 if gi(O1, w
i
j) > gi(O2, w

i
j) and

O = O2 otherwise.

5The terms “solution”, “vector” and “QRT” are utilized interchangeably.
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Fig. 2. The repair operator of SmartOpt optimizer.

The swap mutation operator modifies an offspring O to

a solution Y with a probability rm by uniformly randomly

swapping the values (i.e. parents in the tree) of two indexes

j, z of the QRT Y . The modified QRT solution Y is then

forwarded to the repair heuristic.
3) Repair Operator Step: In Step 2.2 of our algorithm, a

local heuristic checks a QRT solution Y and calculates a QRT

Z iff:

• Case #1: there is a disconnected user ui in QRT Y (i.e.

ui with or without children that does not have a parent);

• Case #2: two or more user ids i of user ui are the same

in QRT Y;

• Case #3: there is an infinite loop in QRT Y;

In all cases (illustrated in Figure 2), the solution Y is

considered infeasible. An infeasible solution can be generated

during reproduction (i.e. genetic operation). A local heuristic

repairs the QRT solution Y to Z by: uniformly randomly

generating a parent for the disconnected user ui in Case #1,

replacing the duplicate user ui with another user uj in Case

#2, breaking the loop by connecting a random user of the

loop with another user out of the loop in Case #3. All repair

techniques are shown with dotted lines in Figure 2. The repair

heuristic continuously repairs solution Y until it does not fall

in any of the Cases #1, #2 or #3. Solution Z is then used to

update the populations of MOEA/D.

C. Dissemination Phase

The proposed SmartOpt opts for the most suited Pareto-

optimal QRT X ∗ ∈ PF based on instant requirements and

forwards it to the query user uj . The query user uj then utilizes

QRT X∗ to initiate the search and find objects of interest oik
recorded by user ui ∈ X ∗ and related to query Q.

IV. EXPERIMENTAL EVALUATION

In this section we present our experimental methodology

and the results of our evaluation.

A. Evaluation Methodology

In this section we describe our trace-driven experimental

methodology in order to assess the effectiveness of our frame-

work.

Datasets and Queries: In the absence of a real dataset

capturing our problem setting, we have constructed a synthetic

scenario from the following two real datasets:



TABLE II

EXPERIMENTAL EXECUTION SCENARIOS

Scenario Q Time G′ # Objects Relevant Objects

T1 Query1 Morning 49 3877 82

T2 Query1 Noon 58 5504 73

T3 Query1 Night 95 8884 121

T4 Query2 Morning 49 3877 319

T5 Query2 Noon 58 5504 477

T6 Query2 Night 95 8884 695

i) GeoLife [15]: This real dataset by Microsoft Research Asia,

includes 1,100 trajectories of a human moving in the city of

Beijing over a life span of two years (2007-2009). The average

length of each trajectory is 190, 110± 126, 590 points, while

the maximum trajectory length is 699,600 points. Notice that

95% of the GeoLife dataset refers to a granularity of 1 sample

every 2-5 seconds or every 5-10 meters.

ii) DBLP [5]: This real dataset by the DBLP Computer Science

Bibliography website, includes over 1.4 million publications in

XML format. In particular, the dataset records the paper titles,

paper urls, co-authors, links between papers and authors and

other useful semantics. In order to map this dataset to our

problem, we assume that each object oik is an author’s paper.

We also assume that each object is “tagged” by the keywords

found in the paper title. The social graph G is constructed by

the co-author relationships that are part of the dataset.

In order to link datasets (i) and (ii) and create our execution,

we have mapped the top 1,100 DBLP authors (those with

the most papers), using a 1:1 correspondence, to the 1,100

trajectories found in the GeoLife dataset. We then utilize the

following two queries with the combinations presented next:

-- Query 1:

SELECT S.title, S.url

FROM SmartphoneUsers S, Query Q

WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%optimization%’;

-- Query 2:

SELECT S.title, S.url

FROM SmartphoneUsers S, Query Q

WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%networks%’;

We execute six different scenarios using Query 1 and Query

2 as shown on Table II. Our scenarios are executed for

three different time periods (i.e., during the morning, during

noon and during night), in order to capture different mobility

patterns that are inherent in the GeoLife dataset.

ii) Search Algorithms: We have implemented the Central-

ized Search algorithm (CS), the Distributed Random Search

(DRS), as these were described in Subsection II-A, as well

as the SmartOpt search algorithm that utilizes an optimized

QRT X to carry out a query execution as opposed to the

random neighbor selection utilized in DRS. We evaluate the

search algorithms using the following metrics: Time, Energy

and Recall, as these were defined in Section II-B and using

the time and energy profiles for our Smartphone devices, we

have presented in Section II-A.

Experimental Setup: Our simulation experiments were per-

formed on a Lenovo Thinkpad T61p PC with an Intel Core

2 Duo CPU running at 2.4GHz and 4.0 GB of RAM. In

order to collect realistic results for a large period of time,

we collect statistics for 100 time instances in each experiment.

To increase the fidelity of our measurements we have repeated

each experiment 5 times and present the average performance

for each type of plot.

B. Evaluation of SmartOpt Search

In this section we evaluate the performance of the SmartOpt

optimizer against the Centralized Search (CS) and Distributed

Random Search (DRS) (presented in Section II-A), using 100

consecutive timestamps from the GeoLife dataset. At each

timestamp (ts), we compare the energy consumption, time

overhead and recall of all algorithms. Since SmartOpt returns

multiple solutions at each timestamp, we plot the average

of all solutions (denoted as SmartOptavg). Additionally, we

plot the best solution (denoted as SmartOptbest) to evaluate

the efficiency of SmartOpt under each performance metric.

Figure 3 illustrates the results of our experiment for all

performance metrics.

In Figure 3 (top/left) we observe that the energy consump-

tion of SmartOptavg and SmartOptbest always outperform CS

and DRS in all timestamps. This is more evident when ts ≥60

where the number of users in the network rapidly increases. In

these timestamps the difference in energy consumption reaches

as high as 1467%, which translates to two orders of magnitude

energy savings by the SmartOpt.

Similar observations apply for Figure 3 (top/right) where we

demonstrate the time overhead for all algorithms. However,

in this Figure, we observe that in the range 0≤ ts ≤38,

CS outperforms SmartOptavg . The reason behind this is that

CS uses more 3G direct connections to the query user thus

minimizing the time overhead. This, however, introduces an

additional energy cost as shown previously.

Finally, in Figure 3 (bottom) we show the recall perfor-

mance for all algorithms. In this Figure, we observe that CS

outperforms all algorithms by demonstrating always 100%

recall. This is expected as CS always retrieves results from

all users in the network. SmartOptbest comes second with ≈
95% recall while DRS comes third with ≈ 54%.

V. CONCLUSIONS

In this paper, we present the SmartOpt framework for

searching objects captured by the users in a mobile social

community. Our framework, is founded on an in-situ data

storage model and searches then take place over the MO-QRT

structure we propose in this paper. Our structure concurrently

optimizes several conflicting objectives (i.e., energy, time and

recall). Our experimental evaluation, with mobility patterns

derived by Microsoft’s Geolife project and social patterns

derived by DBLP, shows reveals that SmartOpt can yield query
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Fig. 3. Evaluation of the CS, DRS and SmartOpt search algorithms using the energy, time and recall performance.

recall rates of 95%, with one order of magnitude less time and

two orders of magnitude less energy than its competitors. In

the future we plan to implement a real prototype of our frame-

work using the SmartNet programming cloud, which consists

of several Android-based smartphones, that we are currently

setting up. We additionally plan to evaluate extensions of our

framework addressing multi-query optimization techniques.
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